3.611 \(\int \cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=349 \[ \frac{\left (2 a^3 A+12 a^2 b B+4 a A b^2+3 b^3 B\right ) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )}{3 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (6 a^2 B+14 a A b-3 b^2 B\right ) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 d \sqrt{\frac{a \cos (c+d x)+b}{a+b}}}+\frac{b^2 (5 a B+2 A b) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{b (2 a A-3 b B) \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{3 d \sqrt{\cos (c+d x)}}+\frac{2 a A \sin (c+d x) \sqrt{\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}{3 d} \]

[Out]

((2*a^3*A + 4*a*A*b^2 + 12*a^2*b*B + 3*b^3*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/
(a + b)])/(3*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + (b^2*(2*A*b + 5*a*B)*Sqrt[(b + a*Cos[c + d*x])/(
a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + ((14*a*A*
b + 6*a^2*B - 3*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*d
*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) - (b*(2*a*A - 3*b*B)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[Cos
[c + d*x]]) + (2*a*A*Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 1.42568, antiderivative size = 349, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 14, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4, Rules used = {2955, 4025, 4096, 4108, 3859, 2807, 2805, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac{\left (2 a^3 A+12 a^2 b B+4 a A b^2+3 b^3 B\right ) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (6 a^2 B+14 a A b-3 b^2 B\right ) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 d \sqrt{\frac{a \cos (c+d x)+b}{a+b}}}+\frac{b^2 (5 a B+2 A b) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{b (2 a A-3 b B) \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{3 d \sqrt{\cos (c+d x)}}+\frac{2 a A \sin (c+d x) \sqrt{\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]),x]

[Out]

((2*a^3*A + 4*a*A*b^2 + 12*a^2*b*B + 3*b^3*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/
(a + b)])/(3*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + (b^2*(2*A*b + 5*a*B)*Sqrt[(b + a*Cos[c + d*x])/(
a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + ((14*a*A*
b + 6*a^2*B - 3*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*d
*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) - (b*(2*a*A - 3*b*B)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[Cos
[c + d*x]]) + (2*a*A*Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(3*d)

Rule 2955

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[((a + b*Csc[e + f*x])^m*(
c + d*Csc[e + f*x])^n)/(g*Csc[e + f*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 4025

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*n), x]
+ Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n + 1)*Simp[a*(a*B*n - A*b*(m - n - 1)) + (
2*a*b*B*n + A*(b^2*n + a^2*(1 + n)))*Csc[e + f*x] + b*(b*B*n + a*A*(m + n))*Csc[e + f*x]^2, x], x], x] /; Free
Q[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LeQ[n, -1]

Rule 4096

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d
*Csc[e + f*x])^n)/(f*(m + n + 1)), x] + Dist[1/(m + n + 1), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^
n*Simp[a*A*(m + n + 1) + a*C*n + ((A*b + a*B)*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) + a*C
*m)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] &&
!LeQ[n, -1]

Rule 4108

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 3859

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(d*Sqr
t[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{(a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a A \sqrt{\cos (c+d x)} (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}-\frac{1}{3} \left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+b \sec (c+d x)} \left (-\frac{3}{2} a (2 A b+a B)-\frac{1}{2} \left (a^2 A+3 A b^2+6 a b B\right ) \sec (c+d x)+\frac{1}{2} b (2 a A-3 b B) \sec ^2(c+d x)\right )}{\sqrt{\sec (c+d x)}} \, dx\\ &=-\frac{b (2 a A-3 b B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\frac{2 a A \sqrt{\cos (c+d x)} (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}-\frac{1}{3} \left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-\frac{1}{4} a \left (14 a A b+6 a^2 B-3 b^2 B\right )-\frac{1}{2} a \left (a^2 A+9 A b^2+9 a b B\right ) \sec (c+d x)-\frac{3}{4} b^2 (2 A b+5 a B) \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx\\ &=-\frac{b (2 a A-3 b B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\frac{2 a A \sqrt{\cos (c+d x)} (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}-\frac{1}{3} \left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-\frac{1}{4} a \left (14 a A b+6 a^2 B-3 b^2 B\right )-\frac{1}{2} a \left (a^2 A+9 A b^2+9 a b B\right ) \sec (c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx+\frac{1}{2} \left (b^2 (2 A b+5 a B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=-\frac{b (2 a A-3 b B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\frac{2 a A \sqrt{\cos (c+d x)} (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}-\frac{1}{6} \left (\left (-14 a A b-6 a^2 B+3 b^2 B\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{6} \left (\left (2 a^3 A+4 a A b^2+12 a^2 b B+3 b^3 B\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+b \sec (c+d x)}} \, dx+\frac{\left (b^2 (2 A b+5 a B) \sqrt{b+a \cos (c+d x)}\right ) \int \frac{\sec (c+d x)}{\sqrt{b+a \cos (c+d x)}} \, dx}{2 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}\\ &=-\frac{b (2 a A-3 b B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\frac{2 a A \sqrt{\cos (c+d x)} (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac{\left (\left (2 a^3 A+4 a A b^2+12 a^2 b B+3 b^3 B\right ) \sqrt{b+a \cos (c+d x)}\right ) \int \frac{1}{\sqrt{b+a \cos (c+d x)}} \, dx}{6 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (b^2 (2 A b+5 a B) \sqrt{\frac{b+a \cos (c+d x)}{a+b}}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{\left (\left (-14 a A b-6 a^2 B+3 b^2 B\right ) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{b+a \cos (c+d x)} \, dx}{6 \sqrt{b+a \cos (c+d x)}}\\ &=\frac{b^2 (2 A b+5 a B) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{b (2 a A-3 b B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\frac{2 a A \sqrt{\cos (c+d x)} (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac{\left (\left (2 a^3 A+4 a A b^2+12 a^2 b B+3 b^3 B\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{6 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{\left (\left (-14 a A b-6 a^2 B+3 b^2 B\right ) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}} \, dx}{6 \sqrt{\frac{b+a \cos (c+d x)}{a+b}}}\\ &=\frac{\left (2 a^3 A+4 a A b^2+12 a^2 b B+3 b^3 B\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{b^2 (2 A b+5 a B) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (14 a A b+6 a^2 B-3 b^2 B\right ) \sqrt{\cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{3 d \sqrt{\frac{b+a \cos (c+d x)}{a+b}}}-\frac{b (2 a A-3 b B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\frac{2 a A \sqrt{\cos (c+d x)} (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [C]  time = 33.5737, size = 73332, normalized size = 210.12 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [C]  time = 0.444, size = 2073, normalized size = 5.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x)

[Out]

1/3/d*(-1+cos(d*x+c))*(cos(d*x+c)+1)*(2*A*cos(d*x+c)^4*((a-b)/(a+b))^(1/2)*a^3*(1/(cos(d*x+c)+1))^(1/2)-2*A*co
s(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^3*(1/(cos(d*x+c)+1))^(1/2)-14*A*sin(d*x+c)*cos(d*x+c)*EllipticE((-1+cos(d*x+c
))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2-
14*A*sin(d*x+c)*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a
+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b+18*A*sin(d*x+c)*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*
x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^2-6*B*sin(d*
x+c)*cos(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*c
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b-3*B*sin(d*x+c)*cos(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)
/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2+30*B*sin(d*x+c)*cos(d*
x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c)
,(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*a*b^2+18*B*sin(d*x+c)*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))
^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b-12*B*sin(d*x+c)*co
s(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x
+c),(-(a+b)/(a-b))^(1/2))*a*b^2+14*A*sin(d*x+c)*cos(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d
*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b-2*A*cos(d*x+c)*((a-b)/(a+b))
^(1/2)*a^2*b*(1/(cos(d*x+c)+1))^(1/2)-14*A*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b^2*(1/(cos(d*x+c)+1))^(1/2)-6*B*c
os(d*x+c)*((a-b)/(a+b))^(1/2)*a^2*b*(1/(cos(d*x+c)+1))^(1/2)-3*B*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b^2*(1/(cos(
d*x+c)+1))^(1/2)+16*A*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^2*b*(1/(cos(d*x+c)+1))^(1/2)+14*A*cos(d*x+c)^2*((a-b)
/(a+b))^(1/2)*a*b^2*(1/(cos(d*x+c)+1))^(1/2)+6*B*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^2*b*(1/(cos(d*x+c)+1))^(1/
2)+6*B*cos(d*x+c)^3*(1/(cos(d*x+c)+1))^(1/2)*((a-b)/(a+b))^(1/2)*a^3+3*B*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a*b^
2*(1/(cos(d*x+c)+1))^(1/2)+6*B*sin(d*x+c)*cos(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),
(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3+3*B*sin(d*x+c)*cos(d*x+c)*EllipticE(
(-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))
^(1/2)*b^3-6*B*sin(d*x+c)*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))
*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3+12*A*sin(d*x+c)*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))
/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(
1/2))*b^3+2*A*sin(d*x+c)*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*
((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3-6*A*sin(d*x+c)*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(
cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^3-14*A*c
os(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^2*b*(1/(cos(d*x+c)+1))^(1/2)-3*B*((a-b)/(a+b))^(1/2)*b^3*(1/(cos(d*x+c)+1))^
(1/2)-6*B*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^3*(1/(cos(d*x+c)+1))^(1/2)+3*B*cos(d*x+c)*((a-b)/(a+b))^(1/2)*b^3
*(1/(cos(d*x+c)+1))^(1/2))*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/((a-b)/(a+b))^(1/2)/(b+a*cos(d*x+c))/(1/(cos(d*
x+c)+1))^(1/2)/sin(d*x+c)^3/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )}{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \cos \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(5/2)*cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (B b^{2} \cos \left (d x + c\right ) \sec \left (d x + c\right )^{3} + A a^{2} \cos \left (d x + c\right ) +{\left (2 \, B a b + A b^{2}\right )} \cos \left (d x + c\right ) \sec \left (d x + c\right )^{2} +{\left (B a^{2} + 2 \, A a b\right )} \cos \left (d x + c\right ) \sec \left (d x + c\right )\right )} \sqrt{b \sec \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*b^2*cos(d*x + c)*sec(d*x + c)^3 + A*a^2*cos(d*x + c) + (2*B*a*b + A*b^2)*cos(d*x + c)*sec(d*x + c)
^2 + (B*a^2 + 2*A*a*b)*cos(d*x + c)*sec(d*x + c))*sqrt(b*sec(d*x + c) + a)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(a+b*sec(d*x+c))**(5/2)*(A+B*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )}{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \cos \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(5/2)*cos(d*x + c)^(3/2), x)